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CERTAIN PROBLEMS IN THE THEORY OF CRACKS IN A BEAM APPROXIMATICN
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In the first section the problem concerning the motion of a crack
under the action of loads applied to its edges is solved approximately
in the same formulation as in [1]. In the second section we consider
cracks whose propagation takes place because the bar loses its stability
in longitudinal compression.

1. The propagation of a crack under load, Let a crack be located
within the segment 0 =< x = [ of the center line of a semi-infinite
(x = 0) bar of rectangular cross section height 2H, and width b, with
the edges of the crack at x = 0 loaded by masses m located in a
gravity field with acceleration g. We consider the part of the bar
located on one side of the crack as a beam which is built~in at
x =1. We denote the displacement of the neutral beam axis at point
x at the instant t by u(x, t), the surface-energy density of the beam
material by T, Young's modulus by E, the beam material densicy
by p, and the linear density by pbH. As shown in [1], the displace-
ment u(x, t) and the length I (t) of the crack must satisfy the re-
lations
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Using Eq. (1.1) we can transform condition (1, 3) to the form
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We use the Kantorovich method to reduce problem (1.1), (1.2),
(1.4) to a system of ordinary differential equations [2]. Approxi-
mately we represent the displacement u(x, t) in the form of a poly-
nomial in degrees of (x = 1), with its coefficients chosen such that
boundary conditions (1.2), (1.4) would be satisfied for any 1. Then
1(t) and the coefficients that were left undetermined are determined
from the system of Euler equations which must be satisfied for a min-
imum of the integral
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We confine ourselves to the case of one equation, i.e., we
approximate the displacement with the fourth degree polynomial
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Substituting (1. 6) into (1.5), we obtain
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We set up the Euler equation for determining L(t); we obtain
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By the substitution y(L) =(dL/dt)* this equation is reduced to
a first order linear equation, The solution of this equation gives the
velocity of the crack as a function of
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The integration constant B is the total energy of the system.

Fig. 1

The equilibrium position is determined from the conditions dL/dt =
=0, d?L/di® = 0, i.e., as a root of the equation de/dL = 0. Solving
this equation, we obtain L = 1, Consequently, I, from (1.6) is the
equilibrium length of the crack. The form of the phase plane (L,
dL/dty is shown in Fig. 1. From this we see that the position of
equilibrium is unstable. The initial configuration of displacements
and velocities in the given approximation is connected with formulas
(1.6) and (L. 7).

If we cannot assume that the initial state satisfied this condition,
then the approximation just considered is inadequate, and the dis-
placement must be approximated by 2 polynomial of a higher degree,
Here new constants of integration appear which enable us to extend
the set of admissible initial states.

Let us consider in more detail the phase trajectory passing through
the position of equilibrium (B = 1/3) A%EIl,). We introduce the di-
mensionless velocity 6 = (¥/a) (dI/dt), equal to the ratio of the
crack velocity to the velocity of a flexure wave whose length equals
the length of the crack., Then Eq. (1.7) is rewritten as follows:
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Relation (1.8) is presented in Fig. 2 in (L,0) coordinates for
various values of the parameter M for a crack moving from left to
right. M =0 formulas (1.6),(1.7) give the exact solution of the
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problem formulated here. This case corresponds to the propagation
of the crack in an inertia-free bar, Formula (1. 7) in this case assumes
the form
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Gonsequently, as the crack grows from the position of equi-
librium, its velocity tends to the value (3g/2.A)1/2 . The case M = =
corresponds to the propagation of the crack under a constant force
mg applied at the end x = 0. This case is obtained from the problem
considered here by going to the limit m — 0, g - =, mg = const,
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In contrast to the case M = 0, here the inertia of the load material
is taken into account, but the inertia of the load is not taken into
consideration,

As we see from expression (1. 7) for &), however small the
parameter M = 0, for sufficiently large L the motion takes place
as if M = o, Thus, the quasi-static approximation M = 0 is appli-
cable for L <« (4/3) (420/61) ML,

We present numerical values of M for H = 0.5 cm, I,/H = 20,
g= 981 cm/sect (the last formula in (1. 6) is used), For o-Fe:

p =7.86 g/cm®, T = 1450 dyne/cm, E = 13,2 » 108 dyne/cm?,

M = 0,06; for LiF: p =2.29 g/em®, T = 700 dyne/em, E = 7,35

» 101 dyne/cm?, M = 0.03. The fairly typical values of M presented
here show that hardly ever is the case M = « encountered in ex-
periments on cracks.

2. Cracks under the conditions of longitudinal flexure. Leta
bar of infinite length —= < x < «, whose dimensions and properties
are the same as in Section 1, be compressed by a longitudinal force
whose absolute value is denoted by P, We assume that as a result of
a loss of stability, a crack located within the segment —1 = x =
develops symmetrically along the center line of the bar, We assume
that the loss of stability takes place only over that segment in which
the crack is located, with the ends of the crack fixed rigidly. We
neglect the longitudinal compressibility of the bar and assume that
the force P does work only over the displacement associated with
the buckling of the bar. In approximation of slight flexure this
displacement equals {3}
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The part of the bar located outside the segment —1 = x = [,
is called the rigid part of the bar, Using the principle of least work,
we can show, in analogy with what was done in [1] for the case of
transverse flexure, that the displacement u(x, t) of the neutral axis
of the bar having lost stability satisfies the equation
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and the boundary conditions
u==0, du/dz=0, %/dz?=_1=2Tb/El)" (2.2)

at each end of the crack. Let us consider certain cases of crack
equilibrium and propagation. Owing to the symmetry of the cases

qonsidered below, the solution is found for 0 =x =< 1I; forx=0
the conditions

ou/ bz =0, Puf 9a8 = 0, (2. 9)

are satisfied.
Furthermore, it is natural to require that u = 0 only for x=1;
this eliminates contact between the opposing edges of the crack,
a) Static problems, If displacement is not a function of time,
the inertia term vanishes in Eq, (2.1). Let the force P be given.
Then
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Since a smaller force corresponds to a larger equilibrium length
of the crack, the equilibrium considered here is unstable., More
natural is the formulation of the problem, such that the displacement
s of the rigid part of the bar is specified (relative to the point x = 0),
Such a case can be realized, for example, with slow shifting of
the testing machine clamps. The displacement and length of the
crack in this case are expressed by the formulas (2. 4), but the
force P is now unknown, With the second formula in (2. 4) the dis-
placement should be expressed in terms of the Iength of the crack,
while the length itself must be determined from the relation
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Carrying out the necessary calculations, we obtain

u(xr)= AEIP1({ +cos V P/ Elx),
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Equilibrium in this case will be stable, An infinite increase in
P as s — 0 is caused by assumption of the incompressibility of the
bar. Apparently it is advisable to take into account the longitudinal
compressibility for small s, since for small s the length of the crack
is also small and the simple theory of longitudinal flexure used here
becomes inapplicable.

b) Dynamic problems. Analogous to [1] we can obtain an in-
variant-group solution of the problem concerning the propagation
of a crack with consideration of the inertia term in(2.1). Such
solutions are stationary solutions of the form u(x, t) = u(x - Vi) and
self-similar solutions of the form u(x, t) = Utf(x*/ar) (here V and U
are constants having the dimensions of velocity; f is a dimension-
less function). Solutions of the first type describe the propagation of
a crack of constant length along the bar, In view of the irreversi-
bility of real cracks, this is of no interest, Therefore they are not

considered here,
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Let us consider solutions of the second type. They describe the
propagation of a crack in such a way that the configurations of the
systern at any two instants of time t; and t, can be transformed into
one another by stretching them along the axis of displacements
(tz/t,) times and along the x axis(ty / tl)'l 2 times, It is obvious that
if the boundary conditions (2.2) and (2. 3) are satisfied for t = t;,
they will be satisfied also for t = tg. If such propagation is possible,
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the crack must develop according to the law = X, where X\ is

a dimensionless quantity depending on the conditions of the experi-
ment, but not varying in the process of crack development. From
dimensional analysis it follows that the longitudinal force must

vary in inverse proportion to the square of the crack length, i.e.,
the equation P = C/* must be satisfied, where C is a constant, di-
mensional quantity. We introduce the notations § = xz/at. L=

= C/4EI )\ and make the substitution u(x, t) = Utf( &) in Eq. (2. 1)
and the boundary conditions (2.2) and (2. 3), We obtain the following
problem:
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We find the solution of this problem in the form of the power
series in &
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Here F(§) is some power series, which is not written out; A\
is the first root of the equation dF/d& =0, lying on the positive
part of the semiaxis, with dF/d¢ determined by the relations
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Using the recursive relation for the terms of the series (2, 7),
we can easily show that im(Bk+/Bk) = 0 as k — « for all &
and y, and hence, according to the d'Alembert criterion, the
series determining dF/d£ converges everywhere. The existence of
a solution for the problem (2. 6) thus depends on whether there exist
positive zeros for series (2. 7). For £ < p, discarding the second
term in the recursive formula (2. 7), we find that
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Therefore, if p is sufficiently large, A ~ fr2/4u. We now prove
that if g is sufficiently small, series (2.7) has no positive zeros.
For this we introduce the functions v(£), w(§) such that
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The problem consequently consists of proving the boundedness of

S p(T)dv.
0
We introduce the functions v(g), w(£) into the differential
equation (2. 8)
T T TR T gy e JIE

Using the formula for solving a nonhomogeneous linear equation
with constant coefficients [4], we obtain the integral equation for
v(£) (the arbitrary constants in the general solution of the homogenous
solution are put equal to zero for the behavior of v(£) in the neigh-
borhood of a zero to agree with (2. 7)):
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We denote by R(§) the maximum value of lv(n)] for 0 =n=g¢,
We evaluate the right side of (2. 8)
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Here Qq is a constant limiting in absolute value both integrals
in the last inequality. It is now clear that v(§) is bounded, because
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otherwise we could find such values of &, larger than any previously
given positive number, that lveeyl = Ree) (veo), being an entire
function, is bounded at all finite points) and the inequality just
proved would assume the form
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which for large & is contradictory, Consequently, for sufficiently
large £ the inequality |v| < 48 uR(=)/¢ + 4Qy/£*/% is valid. Using
this inequality and Eq. (2.8), we find that for sufficiently large &
we have !v(E)I < Qu/E? 2, where Qq is some constant. Hence
follows the required boundedness of the integral
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Figure 3 shows the graphs of the function dF/dg for various
values of y, obtained by direct calculation for formulas (2. 7). As
is seen from these graphs, Aexists only for g = u, =~ 0,412. Cal-
culating the integral
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we find that when solutionsexist, the rigid partof the bar is displaced
according to the law s = N*/2 (N is a dimensional constant), and
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It is natural to assume that the quantity N is specified; then A
is determined from (2. 9). In the case of large g, i.e., small A, we
have
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This case corresponds to quasi-static development of a crack;
this can easily be shown by comparing the relations thus obtained
with formulas (2. 5). Passing from large to small g and observing the
behavior of A, we necessarily arrive at a curve g = p, such that
A= A, i3 a zero of the second order. This follows from dF/dE as a
continuous function of g, Therefore d*F(\)/dE tends to zero,
as A= A, while N/A#3/2 increases without bounds. The graph
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MN/AZ as/z) (Fig. 4, curve 1) asymptotically approaches A = A, & 9.1,

From the same graph it is seen that the static solution is applicable
to N/A23/2 ~ 0, 1. The absence of other branches for the curve
X(N/Azas/z) follows from the fact that for p< p, fonctions (2.7)
have no positive zeros. The last statement, although not proved,
is very likely, as is seen from Fig. 3.

Thus, if the displacement of the rigid part of the bar is realized
according to the law s = N2 and 1(0) = 0, then

wie = et 0B P r e — r o,
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where the function F(£) is determined from (2. 7) with accuracy up
to an additive constant, N\N/a%3/%) is given by curve 1 in Fig, 3,
the longitudinal force is P = 4EI\ u/ 12, while the curve A is given
in Fig, 4 (curve 2).

In conclusion the aunthor thanks Yu. E. Zhumakhev for help in
carrying out the calculations on an M-20 computer.
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