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In the first sect ion the problem concerning the motion of a crack 
under the act ion of loads appl ied to its edges is solved approx imate ly  
in the same formulat ion as in  [1]. In the second sect ion we consider 
cracks whose propagat ion takes p lace  because  the bar loses its s tabi l i ty  
in  longi tud ina l  compression. 

1. The propagat ion of a c rack  under load. Let a crack be located 
wi thin  the segment  0 -< x <- l of the center  l ine  of a s emi - in f in i t e  
(x >- 0) bar of rectangular  cross sect ion he ight  2H, and width b, with 
the edges of the c rack  at  x = 0 loaded by masses m loca ted  in a 

gravi ty  field with acce le ra t ion  g. We consider the part of the bar 
located on one side of the c rack  as a b e a m  which is b u i l t - i n  at 
x = l .  We denote the d i sp lacement  of the neutral  b e a m  axis at  point 

x at the instant  t by u(x, t), the surface-energy density of the b e a m  
ma te r i a l  by T, Young's modulus by E, the b e a m  mate r i a l  density 
by p, and the l inear  density by pbH. As shown in [1], the d isp lace-  
ment  u(x, t) and the length  l (t) of the c rack  must satisfy the re- 
lat ions 

a~u t O"-u E1 
Oz ~ ~- a'- a:- - -0 ,  a"--- pbH'  (1.1) 

Ou x=l : O, u d, t) = 0, 

O~u i A { 21'b ']~,'~ O~u 
-Ox ~ l x ~ l =  = \ E I  ] ' ~ x = 0 = 0 ~  (1.2) 

O~u x=0 O~u x~o" E l  ~ :mg--m ~ (1.3) 

Using Eq, (I. I) we can transform condi t ion (I. 3) to the form 

EI 03u- _ 04u x = o "  Ox a ~ = o - - ' n g  t - m a  ~ ~ (1.4) 

We use the Kantorovich method to reduce problem (I. I), (I. 2), 
(1.4) to a system of ordinary d i f ferent ia l  equations [2]. Approxi-  
m a t e l y  we represent the d i sp lacement  u(x, t) in the form of a poly- 
nomiaI  in degrees of (x -- l),  with its coefficients  chosen such that  
boundary conditions (1.2), (1.4) would be sat isf ied for any l .  Then 
l (t) and the  coefficients  that  were lef t  undetermined are determined 

from the system of Euler equations which must be satisfied for a min-  
i m u m  of the in tegral  

tz I(t) 
[Ob~ ( 0 ~ ?  E f  , O ' a : n  

S = ! , ! k  Z \a t]  --~<7P::) jd~dt§ 
tl 0 

t2 
( r m (o, ,) : ,) + L i -  \ - - - - -07- - ]  -~ mgu (0, J dt, (1.8) 

t )  

h 

We confine ourselves to the case of one equation, i . e . ,  we 
approx imate  the d i sp lacement  with the fourth degree  po lynomia l  

u (x, t) ~.  ~/2 A (x - -  l) ~ § 1/~ A/-1 [1 - -  T (L - -  1)1 X 

X (x - -  l) s --~/~ AI-""T.(L - -  t) (x - - / )% 

1 A E I  LM 
L ~ -  o , / o :  rag ' T = 2 - F L M '  

~ b H lo _ _  _ _  1/-6 pg Io ~ , 
M =  ( w )  "/" (~.~) V-~ 

Substituting (1. 6) into (1.5),  we obtain 

h 
Amto ~ (. ( / dL~2 gq~(L)]dt, 

LA/d"(D (L) l ~ } - )  -I- S = - - g - - -  3. 
t~ 

237 ~- 

(2~0 "[ 23"F" + "r ( L - -  i) 166o 3024 / + 

+ 7e ( L _  1). ( 1 ~  0 23T 233"-I]_{ - 
672 -I- 604S ] j 

~4 y ' (__4_ ~ + ~ 

-1- "r 2 (L -- t) ~ -- -~- -}- , 

5 + 2LM ] 
(L) = L [--  4 + 25 + : (L-- ~)"~ a---~Z~--- I" 

We set up the Euler equat ion for de termining  L(t); we obtain 

deL d~  (L) / dL \2 dq~ (L) d~ 
2A/o~q) (L) ~ J,- Alo ~ ~ ~-dT) = g dL d~" 

By the substitution y(L) = (dL/dt) 2 this equat ion is reduced to 
a first order l inear  equation. The solution of this equat ion gives the 
ve loc i ty  of the crack as a function of 

dL [6B / Amlo ~" _u g~ (L)]'/, 
G F  = L ~-Tz:~7L7 j . (1. v) 

The integrat ion constant B is the to ta l  energy of the system. 

Fig. 1 

The equi l ibr ium position is determined from the conditions dL/dt  = 

= 0, d i L / d t  2 = O, i . e . ,  as a root of the equat ion  d e /dL = 0. Solving 

this equation, we obtain L = 1. Consequently, l 0 from (1.8) is the 
equi l ibr ium length of the c r a c k .  The form of the phase plane (L, 
dL/dt) is shown in Fig. 1. PrOm this we see that  the position of 
equi l ibr ium is unstable.  The in i t i a l  configuration of d isp lacements  
and ve loc i t ies  in the g iven approximat ion is connected with formulas 

(1.6) and (1. ~). 
If we cannot assume that  the in i t ia l  s tate satisfied this condition,  

then the approximat ion just considered is inadequate,  and the dis- 
p lacement  must be approximated by a po lynomia l  of a higher degree.  
Here new constants of integrat ion appear  which enable  us to extend 
the set of admissible  i n i t i a l  states. 

Let us consider in more de ta i l  the phase t rajectory passing through 
the position of equi l ibr ium (B = 1/3)  AZEIl0)~ We introduce the di-  
mensionless ve loc i ty  0 = ( l / a ) ( a l l / d r ) ,  equat  to the ra t io  of the 
crack ve loc i ty  to the ve loc i ty  of a f lexure wave whose length equals 
the length of the crack. Then Eq. (1.7) is rewri t ten as follows: 

( ~ ) 2  i LL]I (5- -2LM)7 
-- ' q ~  ' (1.8) 0" = M  2~- 5 ( 2 ~  i (~')' 

Relation (1.8) is presented in Fig. 2 in (L,O) coordinates for 
various values of the parameter  M for a crack moving from lef t  to 
right.  M = 0 formulas ( 1 . 6 ) , ( 1 . 7 )  g ive  the exact  solution of the 
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problem formulated here.  This case corresponds to the propagat ion 

of the crack in an iner t ia - f ree  bar. Formula (1.7) in this case assumes 
the form 

eL I ( 3g ~,i, ( L - -  f 
d--T = T ( \ T X )  \ ---Z~) 

Consequently,  as the crack grows from the position of equi-  
l ibr ium,  its ve loc i ty  tends to the va lue  (3g/2A) t/2 . The case M = ** 
corresponds to the propagation of the c rack  under a constant  force 

mg applied at  the end x = 0. This case is obtained from the problem 
considered h e r e b y  going to the l i m i t  m ~ 0, g ~ ~o, m g =  const. 

0 g 

M=~t?Ol / 

0 $ 10 ~r 

Fig. 2 

In contrast  to the case M e 0, here  the iner t ia  of the load ma te r i a l  

is t aken  into account,  but  the iner t ia  of the load is not t aken  into 

consideration.  
As we see from expression (1.7) for ~(L), however smal l  the 

parameter  M ~ 0, for suff ic ient ly  large L the motion takes p lace  
as if M = ~.  Thus, the quas i - s ta t ic  approximat ion M = 0 is app l i -  

cab le  for L << (4/3)(420/61)  M "1. 
We present numer ica l  values of M for H = 0.5 cm,  Z0/H = 20, 

g = 981 c m / s e c  2 (the las t  formula in (1. 6) is used). For c~-Fe: 
p =%86 g / c m  3, T = 1450 d y n e / c m ,  E = 13.2 �9 10 u d y n e / c m  2, 
M = 0.06; for LiF: p = 2 . 2 9  g / e r a  3, T = 700 dyne /em,  E = 7.85 
�9 10 n d y n e / c m  2, M = 0.03. The fair ly typ ica l  values of M presented 
here  show that  hardly ever is the  case M = ~o encountered in ex-  

per iments  on cracks.  
2. Cracks under the conditions of longi tudina l  f lexure.  Let a 

bar of infinite length --  ~ < x < % whose dimensions and properties 
are the same as in Section 1, be compressed by a Iongi tudinal  force 
whose absolute va lue  is denoted by P. We assume that  as a resutt  of 
a loss of s tabi l i ty ,  a c rack  loca ted  within the segment  - l  -< x -< l 
develops symmet r i ca l ly  a long the center  l ine  of the bar. We assume 
that  the loss of s tabi l i ty  takes p lace  only over that  segment  in which 
the c rack  is loca ted ,  with the ends of the crack fixed r igidly.  We 
negiec t  the longi tudina l  compress ibi l i ty  of the bar and assume that  
the force P does work only over the d i sp lacement  associated with 
the buckl ing of the bar. In approximat ion of s l ight  f lexure this 
d i sp lacement  equals [8] 

l 

The part of the bar located outside the segment  - - I  -< x -< l ,  
is ca l l ed  the rigid part of the bar. Using the pr inc ip le  of least  work, 
we can show, in analogy with what was done in [1] for the case of 
transverse flexure, that  the d i sp lacement  u(x, t) of the neutra l  axis 
of the bar having lost s tab i l i ty  satisfies the equat ion 

Oau P 0 %  t O"-u E I  
O~ ~ + ~ 2 7  a ~. Ots = 0 ,  a e - -  pOH (2.1) 

and the boundary conditions 

u =- O, Ou / Ox = O, O ~  / Oz ~ -- . l = (2Tb / E[ )  G (2.2) 

a t  each  end of the crack. Let us consider cer ta in  cases of crack 
equi l ibr ium and propagation. Owing to the symmetry  of the cases 

considered below, the solution is found for 0 -< x -<- l ;  for x = 0 
the conditions 

Ou/  O x = O ,  OSul Ox3 = O ~  (2.3) 

are satisfied. 
Furthermore, i t  is natural  to require that  u = 0 only for x = l ;  

this e l imina tes  contact  between the opposing edges of  the crack�9 
a) Stat ic  problems. If  d i sp lacement  is not a function of t ime ,  

the iner t ia  te rm vanishes in Eq�9 (2.1) .  Let the  force P be given.  
Then 

u ( x ) = A E I p - I ( f  + c o s  VplZi~:), z = ~  g ~ .  (2.4) 

Since a smal le r  force corresponds to a larger  equi l ibr ium length 

of the crack, the equi l ibr ium considered here  is unstable.  More 
natural  is the formulat ion of the problem, such that  the d i sp lacement  
s of the rigid part of the bar is specif ied (relat ive to the point x = 0). 
Such a case can  be real ized,  for example ,  with slow shift ing of 

the test ing mach ine  c lamps.  The d isp lacement  and length  of the 
crack in this case are expressed by the formulas (2. 4), but the 

force P is now unknown. With the second formula in  (2. 4) the dis- 
p lacement  should be expressed in terms of the  Iength of the crack, 
whi le  the length i tself  must be determined from the re la t ion  

l 
s ! t  /Ou \~  

Carrying out the necessary calculat ions,  we obtain 

2'l:'st % s ''~ r~"-E t A % 
z - -  .4,1~ p = 2%,d/~ (2. 5) 

Equil ibrium in this case will be stable.  An infinite increase in 
P as s --~ 0 is caused by assumption of the incompress ibi l i ty  of the 
bar.  Apparent ly i t  is advisable  to take into account  the longi tudina l  
compressibi l i ty  for smal l  s, s ince for smal l  s the length of the crack 
is also smal l  and the s imple  theory of iongi tudina l  flexure used here  
becomes inappl icable .  

b) Dynamic  problems.  Analogous to [1] we can  obtain an in-  
var iant-group solution of the problem concerning the propagat ion 
of a crack with considerat ion of the iner t i a  term in (2 .1) .  Such 

solutions are s tat ionary solutions of the form u(x, 0 = u(x - Vt) and 
se l f - s imi la r  solutions of the form u(x, t) = U t f ( x2 /a t )  (here V and U 

are constants having the dimensions of ve loc i ty ;  f is a d imension-  
less function). SolutionS of the first type describe the propagat ion of 

a crack of constant length along the bar. I n  v iew of the irreversi-  
b i l i ty  of rea l  cracks, this is of no interest .  Therefore they are not 
considered here.  

I0000 

o.5 

o 1o ~0 

Fig. 3 

Let us consider solutions of the second type. They describe r_he 

propagation of a crack in such a way that the configuratiom of the 

system at any two instants of time t I and t 2 can be transformed into 

one another by stretching them along the axis of displacements 

(t%/tl) times and along the x axis(t2/tl) I/2 times. It is obvious that 

if the boundary conditions (2. 2) and (2.3) are satisfied for t = t I, 

they will be satisfied also for t = t2. If such propagation is possible, 
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the crack must develop according to the law l z = k, where X is 
a dimensionless quantity depending on the conditions of the experi- 
ment, but not varying in the process of crack development. From 
dimensional analysis it fellows that the longitudinal force must 
vary in inverse proportion to the square of the crack length, i . e . ,  
the equation P = C / l  z must be satisfied, where C is a constant, di- 
mensional quantity. We introduce the notations g = xZ/at, ~t = 
= C/4EI k and make the substitution u(x, t) = Utf( g ) in Eq. (2.1) 
and the boundary conditions (2. 2) and (2.3). We obtain the following 
problem: 

d '~] d~]__}_ / 3  , ~ \  d~/ Ix d] 
~ - d ~ + 3 ~  a~  t - ~ - ~ + ~ - )  r + ~ r  

d/  ( d'-/ , d~/ \ 
lira ]/-~. ~-~ = O, lira ]/~ \3 ~ + 2~-d~-~ ) = 0 , 

d i G )  ,. d"~/G) Aa 
1 B) = o, d~ = 0, ~ ~ = ~ - .  (2.6) 

We find the solution of this problem in the form of the power 
series in 

I (~) = aA U -~ [4kd'-F (L) / d~e] -~ [F (~) - -  F Q~)]. 

Here F(g) is some power series, which is not written out; k 
is the first mot of the equation dF/dg = 0, Iying on the positive 
part of the semiaxis, with dF/dg determined by the relations 

co 
dY '2 
, ~  = Y, ~i~, ~o = l ,  ~, -- - ~ ~ ,  

Using the recursive relation for the terms of the series (2.7), 
we can easily show that lim(Bk+t/Bk) = 0 as k ~ ~ for all 
and #, and hence, according to the d'Alembert criterion, the 
series determining dF/dg converges everywhere. The existence of 
a solution for the problem (~. 6) thus depends on whether there exist 
positive zeros for series (2.7). For g << #, discarding the second 
term in the recursive formula (2.7), we find that 

d F  / d~ ~ s in  ] / ~ 1  " ~  . 

Therefore, if/~ is sufficiently large, k ~ ~/4/a. We now prove 
that if g is sufficiently small, series (2.7) has no positive zeros. 
For this we introduce the funetiom v(~), w(g) such that 

d~F d F  �9 
d~". = ~" (U = ~-'/'~ (~), d---~ = t + W f v (~) d'~. 

o 

The problem comequently consists of proving the boundedness of 

I v  (z) dr.  
0 

We introduce the functions v(g), w(g) into the differential 
equation (2.6) 

d~---r + yff = - ~ 7 -  + ~ i § ~ ~, (,) dr 
0 

Using the formula for solving a nonhomogeneons linear equation 
with constant coefficients [4], we obtain the integral equation for 
v(g) (the arbitrary constants in the general solution of the homogenous 
solution are put equal to zero for the behavior of v(g) in the neigh- 
borhood of a zero to agree with (2. 7)): 

~'l'v (~) = --41~ I ] /~  v (~1) s in-  ~ dr I - -  
o 

- -  4Ix i sin k; a!~f-~ q) i  v(x)dr -+-41sin t& ( ~ -  '~q)dq . 2  ~ (2.8) 
o V~I o o 

We denote by R(~) the maximum value of lv(~)[ for 0 -< 1 ~ ~. 
We evaluate the right side of (2.8) 

~"' I v (~) { ~< 4Ix ~ -  R (4) V-~  s in  - -  d~] q- 

+ 4 [ s i n [ ~ ( ~ - - q ) ]  

cos %(~ -- ~1) 
<6~R(~)4~+a~n(~) o ~ ~nn ~r~ + 

+ 4  I sint/a(~--n) d~l -%241~B(~) ]/-~-[- 
2r 

0 

+ 24[~//(4) Qt ~- 4Q1. 

Here Q I  is a constant limiting in absolute value both integrals 
in the last inequality. It is now clear that v(g) is bounded, because 

I 

I ! /k,~ 
! O 
4' 8 

Fig. 4 

otherwise we could find such values of G larger than any previously 
given positive number, that [v(~)I = R(~) (v(g), being an entire 
function, is bounded at all finite points) and the inequality just 
proved would assume the form 

q ~R (4) 24~R (4) Q, + 4QI 

which for large I is contradictory. Consequently, for sufficiently 
large ~ the inequality Iv]< 48 gR(oo)/g + 4QI/~ s/z is valid. Using 
this inequality and Eq. (2.8), we find that for sufficiently large 
we have Iv(t) I < Q2/g 3/2, where Q2 is some constant. Hence 
follows the required boundedness of the integral 

I v (T) dr .  
o 

Figure 3 shows the graphs of the function dF/dg for various 
values of/4 obtained by direct calculation for formulas (2.7). As 
is seen from these graphs, kexists only for g ~- g .  = 0.412. Cal- 
culating the integral 

l 

I t / O u \ 2  
=,= ; . l ~ ) e = ,  

o 

we find that when solutions exist, the rigid part of the bar is dispIaced 
according to the law s = Nt s/~ (N is a dimensional constant), and 

N C d~F{L)3-~p  .-IdF\~ 

0 

It is natural to assume that the quantity N is specified; then k 
is determined from (2.9). In the ease of large g, i . e . ,  small X, we 
have 

N k "/' C 4El~t EI~" 
.4~a V, ~ 4~ ~ ' P ~ Y =  ~ l" " 

This case corresponds to quasi-static development of a crack; 
this can easily be shown by comparing the relations thus obtained 
with formulas (2. fib Passing from large to small g and observing the 
behavior of k, we necessarily arrive at a curve ~ = g .  such that 
k = k.  is a zero of the second order. This follows from dF/dg as a 
continuous function of p. Therefore dZF(X)/dg z tends to zero, 
as X~  X. while N/Are s/s increases without bounds. The graph 
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k(N/A 2 a s/z) (Fig. 4, curve 1) asymptotically approaches k ~- k.  ~ 9.1. 
From the same graph it is seen that the static solution is applicable 
to N/A2a s/~ ~ 0.1. The absence of other branche~ for the curve 
k(N/AZa s/z) follows from the fact that for # < p .  functions (2.7) 
have no positive zeros. The last statement, although not proved, 
is very likely, as is seen from Fig. 3. 

Thus, if the displacement of tile rigid part of the bar is realized 
according to the law s = Nt z/z and l (0) = 0. then 

C d~Y (k) ]-r u ( z , t ) = a , 4 t [ 4 ~ j  [F(~)--F(L)] ,  

(t) = [ k x l 

where the function F(~) is determined from (2.7) with accuracy up 
to an additive constant, k(N/AZa 3/s) is given by curve 1 in Fig. 3, 
the longitudinal force is P = 4EIXg/L z, while the curve )ha is given 
in Fig. 4 (curve 2). 

In conclusion the author thanks Yu. E. Zhumakhev for help in 
ca~ying out the calculations on an M-20 computer. 
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